Нейтральные аминокислоты примеры. «Аминокислоты строение, классификация, свойства, биологическая роль. Белки волос кератины относятся к группе

Аминокислотами называются карбоновые кислоты, содержащие аминогруппу и карбоксильную группу. Природные аминокислоты являются 2-аминокарбоновыми кислотами, или α-аминокислотами, хотя существуют такие аминокислоты как β-аланин, таурин, γ-аминомасляная кислота. Обобщенная формула α-аминокислоты выглядит так:

У α-аминокислот при 2 атоме углерода имеются четыре разных заместителя, то есть все α-аминокислоты, кроме глицина, имеют асимметрический (хиральный) атом углерода и существуют в виде двух энантиомеров – L- и D-аминокислот. Природные аминокислоты относятся к L-ряду. D-аминокислоты встречаются в бактериях и пептидных антибиотиках.

Все аминокислоты в водных растворах могут существовать в виде биполярных ионов, причем их суммарный заряд зависит от рН среды. Величина рН, при которой суммарный заряд равен нулю, называется изоэлектрической точкой. В изоэлектрической точке аминокислота является цвиттер-ионом, то есть аминная группа у нее протонирована, а карбоксиль-ная – диссоциирована. В нейтральной области рН большинство аминокислот являются цвиттер-ионами:

Аминокислоты не поглощают свет в видимой области спектра, ароматические аминокислоты поглощают свет в УФ области спектра: триптофан и тирозин при 280 нм, фенилаланин – при 260 нм.

Для аминокислот характерны некоторые химические реакции, имеющие большое значение для лабораторной практики: цветная нингидриновая проба на α-аминогруппу, реакции, характерные для сульфгидрильных, фенольных и других групп радикалов аминокислот, ацелирование и образование оснований Шиффа по аминогруппам, этерификация по карбоксильным группам.

Биологическая роль аминокислот:

1) являются структурными элементами пептидов и белков, так называемые протеиногенные аминокислоты. В состав белков входят 20 аминокислот, которые кодируются генетическим кодом и включаются в белки в про-цессе трансляции, некоторые из них могут быть фосфорилированы, ацилированы или гидроксилированы;

2) могут быть структурными элементами других природных соединений – коферментов, желчных кислот, антибиотиков;

3) являются сигнальными молекулами. Некоторые из аминокислот являются нейромедиаторами или предшественниками нейромедиаторов, гормонов и гистогормонов;

4) являются важнейшими метаболитами, например, некоторые аминокислоты являются предшественниками алкалоидов растений, или служат донорами азота, или являются жизненно важными компонентами питания.

Классификация протеиногенных аминокислот основана на строении и на полярности боковых цепей:

1. Алифатические аминокислоты:

Глицин, гли , G, Gly

Аланин, ала , А, Ala

Валин, вал , V, Val*

Лейцин, лей , L, Leu*

Изолейцин, иле, I, Ile*

Эти аминокислоты не содержат в боковой цепи гетероатомов, циклических группировок и характеризуется отчетливо выраженной низкой полярностью.

Цистеин, цис , C, Cys

Метионин, мет , M, Met*

3. Ароматические аминокислоты:

Фенилаланин, фен , F, Phe*

Тирозин, тир , Y, Tyr

Триптофан, три , W, Trp*

Гистидин, гис , H, His

Ароматические аминокислоты содержат мезомерные резонансно стабилизированные циклы. В этой группе только аминокислота фенилаланин проявляет низкую полярность, тирозин и триптофан характеризуются заметной, а гистидин – даже высокой полярностью. Гистидин может быть отнесен также к основным аминокислотам.

4. Нейтральные аминокислоты:

Серин, сер , S, Ser

Треонин, тре , T, Thr*

Аспарагин, асн, N, Asn

Глутамин, глн, Q, Gln

Нейтральные аминокислоты содержат гидроксильные или карбоксамидные группы. Хотя амидные группы неионогенны, молекулы аспарагина и глута-мина высоко полярны.

5. Кислые аминокислоты:

Аспарагиновая кислота (аспартат), асп , D, Asp

Глутаминовая кислота (глутамат), глу, E, Glu

Карбоксильные группы боковых цепей кислых аминокислот полностью ионизированы во всем диапазоне физиологических значений рН.

6. Основные аминокислоты:

Лизин, лиз, K, Lys*

Аргинин, арг , R, Arg

Боковые цепи основных аминокислот полностью протонированы в нейтраль-ной области рН. Сильно основной и очень полярной аминокислотой является аргинин, содержащий гуанидиновую группировку.

7. Иминокислота:

Пролин, про , P, Pro

Боковая цепь пролина состоит из пятичленного цикла, включающего α-углеродный атом и α-аминогруппу. Поэтому пролин, строго говоря, является не амино-, а иминокислотой. Атом азота в кольце является слабым основанией и не протонируется при физиологических значениях рН. Благодаря циклической структуре пролин вызывает изгибы полипептидной цепи, что очень существенно для структуры коллагена.

Некоторые из перечисленных аминокислот не могут синтезироваться в организме человека и должны поступать вместе с пищей. Это незаменимые аминокислоты отмечены звездочками.

Как было указано выше, протеиногенные аминокислоты являются предшественниками некоторых ценных биологически активных молекул.

Два биогенных амина β-аланин и цистеамин входят в состав кофермента А (коферменты – производные водорастворимых витаминов, образующие активный центр сложных ферментов). β-Аланин образуется путем декарбоксилирования аспарагиновой кислоты, а цистеамин путем декарбоксилирования цистеина:

β-аланин цистеамин

Остаток глутаминовой кислоты входит в состав другого кофермента – тетрагидрофолиевой кислоты, производного витамина В с.

Другими биологически ценными молекулами являются конъюгаты желчных кислот с аминокислотой глицином. Эти конъюгаты являются более сильными кислотами, чем базовые, образуются в печени и присутствуют в желчи в виде солей.

Гликохолевая кислота

Протеиногенные аминокислоты являются предшественниками некоторых антибиотиков – биологически активных веществ, синтезируемых микроорганизмами и подавляющих размножение бактерий, вирусов и клеток. Наиболее известными из них являются пенициллины и цефалоспорины, составляющие группу β-лактамных антибиотиков и продуцирумые плесенью рода Penicillium . Для них характерно наличие в структуре реакционноспособного β-лактамного кольца, с помощью которого они ингибируют синтез клеточных стенок грамотрицательных микроорганизмов.

Общая формула пенициллинов

Из аминокислот путем декарбоксилирования получаются биогенные амины – нейромедиаторы, гормоны и гистогормоны.

Аминокислоты глицин и глутамат сами по себе являются нейромедиаторами в центральной нервной системе.

дофамин (нейромедиатор) норадреналин (нейромедиатор)

адреналин (гормон) гистамин (медиатор и гистогормон)

серотонин (нейромедиатор и гистогормон) ГАМК (нейромедиатор)

Тироксин (гормон)

Производным аминокислоты триптофана является наиболее известный из встречающихся в природе ауксин – индолилуксусная кислота. Ауксины – это регуляторы роста растений, они стимулируют дифференцировку растущих тканей, рост камбия, корней, ускоряют рост плодов и опадение старых листьев, их антагонистами является абсцизовая кислота.

Индолилуксусная кислота

Производными аминокислот также являются алкалоиды – природные азотсодержащие соединения основного характера, образующиеся в расте-ниях. Данные соединения являются исключительно активными физиологическими соединениями, широко используемыми в медицине. Примерами алкалоидов могут служить производное фенилаланина папаверин, изохинолиновый алкалоид мака снотворного (спазмолитик), и производное триптофана физостигмин, индольный алкалоид из калабар-ских бобов (антихолинэстеразный препарат):

папаверин физостигмин

Аминокислоты являются чрезвычайно популярными объектами биотехнологии. Существует множество вариантов химического синтеза аминокислот, однако в результате получаются рацематы аминокислот. Так как для пищевой промышленности и медицины пригодны только L-изомеры аминокислот, рацемические смеси необходимо разделять на энантиомеры, что представляет серьезную проблему. Поэтому более популярен биотехнологический подход: ферментативный синтез с помощью иммобилизированных ферментов и микробиологический синтез с помощью целых микробных клеток. В обоих последних случаях получаются чистые L-изомеры.

Аминокислоты используются как пищевые добавки и компоненты кормов. Глутаминовая кислота усиливает вкус мяса, валин и лейцин улучшают вкус хлебобулочных изделий, глицин и цистеин используются в качестве антиоксидантов при консервировании. D-триптофан может быть заменителем сахара, так как во много раз его слаще. Лизин добавляют в корм сельскохозяйственным животным, так как большинство растительных белков содержит малое количество незаменимой аминокислоты лизина.

Аминокислоты широко используются в медицинской практике. Это такие аминокислоты как метионин, гистидин, глутаминовая и аспарагиновая кислоты, глицин, цистеин, валин.

В последнее десятилетие аминокислоты начали добавлять в космети-ческие средства по уходу за кожей и волосами.

Химически модифицированные аминокислоты также широко используются в промышленности в качестве поверхностно-активных веществ в синтезе полимеров, при производстве моющих средств, эмульгаторов, добавок к топливу.

БЕЛКИ

Белки – это высокомолекулярные вещества, состоящие из аминокислот, соединенных пептидной связью.

Именно белки являются продуктом генетической информации, передаваемой из поколения в поколение, и осуществляют все процессы жизнедеятельности в клетке.

Функции белков:

1. Каталитическая функция. Наиболее многочисленную группу белков составляют ферменты – белки с каталитической активностью, ускоряющие химические реакции. Примерами ферментов являются пепсин, алкогольдегидрогеназа, глутаминсинтетаза.

2. Структурообразующая функция. Структурные белки отвечают за поддер-жание формы и стабильности клеток и тканей, к ним относятся кератины, коллаген, фиброин.

3. Транспортная функция. Транспортные белки переносят молекулы или ионы из одного органа в другой или через мембраны внутри клетки, например, гемоглобин, сывороточный альбумин, ионные каналы.

4. Защитная функция. Белки системы гомеостаза защищают организм от возбудителей болезней, чужеродной информации, потери крови – иммуноглобулины, фибриноген, тромбин.

5. Регуляторная функция. Белки осуществляют функции сигнальных веществ – некоторых гормонов, гистогормонов и нейромедиаторов, являются рецепторами к сигнальным веществам любого строения, обеспечивают дальнейшую передачу сигнала в биохимических сигнальных цепях клетки. Примерами могут служить гормон роста соматотропин, гормон инсулин, Н- и М-холинорецепторы.

6. Двигательная функция. С помощью белков осуществляются процессы сокращения и другого биологического движения. Примерами могут служить тубулин, актин, миозин.

7. Запасная функция. В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами, в организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

Для белков характерным является наличие нескольких уровней структурной организации.

Первичной структурой белка называют последовательность аминокислотных остатков в полипептидной цепи. Пептидная связь – это карбоксамидная связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

Аланилфенилаланилцистеилпролин

У пептидной связи есть несколько особенностей:

а) она резонансно стабилизирована и поэтому находится практически в одной плоскости – планарна; вращение вокруг связи С-N требует больших затрат энергии и затруднено;

б) у связи -CO-NH- особый характер, она меньше, чем обычная, но больше, чем двойная, то есть существует кето-енольная таутомерия:

в) заместители по отношению к пептидной связи находятся в транс -положении;

г) пептидный остов окружен разнообразными по своей природе боковыми цепями, взаимодействуя с окружающими молекулами растворителя, свободные карбоксильные и аминогруппы ионизируются, образуя катионные и анионные центры молекулы белка. В зависимости от их соотношения белковая молекула получает суммарный положительный или отрицательный заряд, а также характеризуется тем или иным значением рН среды при достижении изоэлектрической точки белка. Радикалы образуют солевые, эфирные, дисульфидные мостики внутри молекулы белка, а также определяют круг реакций, свойственных белкам.

В настоящее время условились считать белками полимеры, состоящие из 100 и более аминокислотных остатков, полипептидами – полимеры, состоящие из 50-100 аминокислотных остатков, низкомолекулярными пептидами – полимеры, состоящие из менее 50 аминокислотных остатков.

Некоторые низкомолекулярные пептиды играют самостоятельную биологическую роль. Примеры некоторых таких пептидов:

Глутатион – γ-глу-цис-гли – один из наиболее широко распространен-ных внутриклеточных пептидов, принимает участие в окислительно-восстановительных процессах в клетках и переносе аминокислот через биологические мембраны.

Карнозин – β-ала-гис – пептид, содержащийся в мышцах животных, устраняет продукты перекисного расщепления липидов, ускоряет процесс распада углеводов в мышцах и в виде фосфата вовлекается в энергетический обмен в мышцах.

Вазопрессин – гормон задней доли гипофиза, участвующий в регуля-ции водного обмена организма:

Фаллоидин – ядовитый полипептид мухомора, в ничтожных концентрациях вызывает гибель организма вследствие выхода ферментов и ионов калия из клеток:

Грамицидин – антибиотик, действующий на многие грамположительные бактерии, изменяет проницаемость биологических мембран для низкомолекулярных соединений и вызывает гибель клеток:

Мет -энкефалин – тир-гли-гли-фен-мет – пептид, синтезирующийся в нейронах и ослабляющий болевые ощущения.

Вторичная структура белка – это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова.

Пептидная цепь содержит множество СО- и NH-групп пептидных связей, каждая из которых потенциально способна участвовать в образовании водородных связей. Существуют два главных типа структур, которые позволяют это осуществить: α-спираль, в которую цепь свертывается как шнур от телефонной трубки, и складчатая β-структура, в которой бок о бок уложены вытянутые участки одной или нескольких цепей. Обе эти структуры весьма стабильны.

α-Спираль характеризуется предельно плотной упаковкой скрученной полипептидной цепи, на каждый виток правозакрученной спирали приходится 3,6 аминокислотных остатка, радикалы которых направлены всегда наружу и немного назад, то есть в начало полипептидной цепи.

Основные характеристики α-спирали:

1) α-спираль стабилизируется водородными связями между атомом водорода при азоте пептидной группы и карбонильным кислородом остатка, отстоящего от данного вдоль цепи на четыре позиции;

2) в образовании водородной связи участвуют все пептидные группы, это обеспечивает максимальную стабильность α-спирали;

3) в образовании водородных связей вовлечены все атомы азота и кислорода пептидных групп, что в значительной мере снижает гидрофильность α-спиральных областей и увеличивает их гидрофобность;

4) α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии;

5) в полипептидной цепи из L-аминокислот правая спираль, обычно обнаруживаемая в белках, намного стабильнее левой.

Возможность образования α-спирали обусловлена первичной структурой белка. Некоторые аминокислоты препятствуют закручиванию пептидного остова. Например, расположенные рядом карбоксильные группы глутамата и аспартата взаимно отталкиваются друг от друга, что препятствует образованию водородных связей в α-спирали. По этой же причине затруднена спирализация цепи в местах близко расположенных друг к другу положительно заряженных остатков лизина и аргинина. Однако наибольшую роль в нарушении α-спирали играет пролин. Во-первых, в пролине атом азота входит в состав жесткого кольца, что препятствует вращению вокруг связи N-C, во-вторых, пролин не образует водородную связь из-за отсутствия водорода при атоме азота.

β-складчатость – это слоистая структура, образуемая водородными связями между линейно расположенными пептидными фрагментами. Обе цепи могут быть независимыми или принадлежать одной молекуле полипептида. Если цепи ориентированы в одном направлении, то такая β-структура называется параллельной. В случае противоположного направления цепей, то есть когда N-конец одной цепи совпадает с С-концом другой цепи, β-структура называется антипараллельной. Энергетически более предпочтительна антипараллельная β-складчатость с почти линейными водородными мостиками.

параллельная β-складчатость антипараллельная β-складчатость

В отличие от α-спирали, насыщенной водородными связями, каждый участок цепи β-складчатости открыт для образования дополнительных водородных связей. Боковые радикалы аминокислот ориентированы почти перпендикулярно плоскости листа попеременно вверх и вниз.

В тех участках, где пептидная цепь изгибается достаточно круто, часто находится β-петля. Это короткий фрагмент, в котором 4 аминокислотных остатка изгибаются на 180 о и стабилизируются одним водородным мостиком между первым и четвертым остатками. Большие аминокислотные радикалы мешают образованию β-петли, поэтому в нее чаще всего входит самая маленькая аминокислота глицин.

Надвторичная структура белка – это некоторый специфический порядок чередования вторичных структур. Под доменом понимают обособленную часть молекулы белка, обладающую в определенной степени структурной и функциональной автономией. Сейчас домены считают фундаментальными элементами структуры белковых молекул и соотношение и характер компоновки α-спиралей и β-слоев дает для понимания эволюции белковых молекул и филогенетических связей больше, чем сопоставление первичных структур. Главной задачей эволюции является конструирование все новых белков. Бесконечно мал шанс случайно синтезировать такую аминокислотную последовательность, которая бы удовлетворила условиям упаковки и обеспечила выполнение функциональных задач. Поэтому часто встречаются белки с различной функцией, но сходные по структуре настолько, что кажется, что они имели одного общего предка или произошли друг от друга. Похоже, что эволюция, столкнувшись с необходимостью решить определенную задачу, предпочитает не конструировать для этого белки сначала, а приспособить для этого уже хорошо отлаженные структуры, адаптируя их для новых целей.

Некоторые примеры часто повторяющихся надвторичных структур:

1) αα’ – белки, содержащие только α-спирали (миоглобин, гемоглобин);

2) ββ’ – белки, содержащие только β-структуры (иммуноглобулины, супероксиддисмутаза);

3) βαβ’ – структура β-бочонка, каждый β-слой расположен внутри бочонка и связан с α-спиралью, находящейся на поверхности молекулы (триозофосфоизомераза, лактатдегидрогеназа);

4) «цинковый палец» – фрагмент белка, состоящий из 20 аминокислотных остатков, атом цинка связан с двумя остатками цистеина и двумя гистидина, в результате чего образуется «палец» из примерно 12 амино-кислотных остатков, может связываться с регуляторными участками молекулы ДНК;

5) «лейциновая застежка-молния» – взаимодействующие белки имеют α-спиральный участок, содержащий по крайней мере 4 остатка лейцина, они расположены через 6 аминокислот один от другого, то есть находятся на поверхности каждого второго витка и могут образовывать гидрофобные связи с лейциновыми остатками другого белка. С помощью лейциновых застежек, например, молекулы сильноосновных белков гистонов могут объединяться в комплексы, преодолевая положительный заряд.

Третичная структура белка – это пространственное расположение молекулы белка, стабилизируемое связями между боковыми радикалами аминокислот.

Типы связей, стабилизирующих третичную структуру белка:

электростатическое водородные гидрофобные дисульфидные

взаимодействие связи взаимодействия связи

В зависимости от складывания третичной структуры белки можно классифицировать на два основных типа – фибриллярные и глобулярные.

Фибриллярные белки – нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси. В основном это структурные и сократительные белки. Несколько примеров самых распространенных фибриллярных белков:

1. α-Кератины. Синтезируются клетками эпидермиса. На их долю приходится почти весь сухой вес волос, шерсти, перьев, рогов, ногтей, когтей, игл, чешуи, копыт и черепашьего панциря, а также значительная часть веса наружного слоя кожи. Это целое семейство белков, они сходны по аминокислотному составу, содержат много остатков цистеина и имеют одинаковое пространственное расположение полипептидных цепей. В клетках волос полипептидные цепи кератина сначала организуются в волокна, из которых затем формируются структуры наподобие каната или скрученного кабеля, заполняющего в конце концов все пространство клетки. Клетки волос становятся при этом уплощенными и, наконец, отмирают, а клеточные стенки образуют вокруг каждого волоса трубчатый чехол, называемый кутикулой. В α-кератине полипептидные цепи имеют форму α-спирали, скручены одна вокруг другой в трехжильный кабель с образованием поперечных дисульфидных связей. N-концевые остатки расположены с одной стороны (параллельны). Кератины нерастворимы в воде из-за преобладания в их составе аминокислот с неполярными боковыми радикалами, которые обращены в сторону водной фазы. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем при придании волосам необходимой формы их высушивают нагреванием, при этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

2. β-Кератины. К ним относятся фиброин шелка и паутины. Представляют из себя антипараллельные β-складчатые слои с преобладанием глицина, аланина и серина в составе.

3. Коллаген. Самый распространенный белок у высших животных и главный фибриллярный белок соединительных тканей. Коллаген синтезируется в фибробластах и хондроцитах – специализированных клетках соединительной ткани, из которых затем выталкивается. Коллагеновые волокна находятся в коже, сухожилиях, хрящах и костях. Они не растяги-ваются, по прочности превосходят стальную проволоку, коллагеновые фибриллы характеризуются поперечной исчерченностью. При кипячении в воде волокнистый, нерастворимый и неперевариваемый коллаген превращается в желатин в результате гидролиза некоторых ковалентных связей. Коллаген содержит 35% глицина, 11% аланина, 21% пролина и 4-гидроксипролина (аминокислоты, свойственной только для коллагена и эластина). Такой состав определяет относительно низкую питательную ценность желатина как пищевого белка. Фибриллы коллагена состоят из повторяющихся полипептидных субъединиц, называемых тропоколлагеном. Эти субъединицы уложены вдоль фибриллы в виде параллельных пучков по типу «голова к хвосту». Сдвинутость головок и придает характерную поперечную исчерченность. Пустоты в этой структуре при необходимости могут служить местом отложения кристаллов гидроксиапатита Са 5 (ОН)(РО 4) 3 , играющего важную роль в минерализации костей.

Тропоколлагеновые субъединицы состоят из трех полипептидных цепей, плотно скрученных в виде трехжильного каната, отличающегося от α- и β-кератинов. В одних коллагенах все три цепи имеют одинаковую аминокислотную последовательность, тогда как в других идентичны только две цепи, а третья отличается от них. Полипептидная цепь тропоколлагена образует левую спираль, на один виток которой приходится только три аминокислотных остатка из-за изгибов цепи, обусловленной пролином и гидроксипролином. Три цепи связаны между собой кроме водородных связей связью ковалентного типа, образующейся между двумя остатками лизина, находящимися в соседних цепях:

По мере того как мы становимся старше, в тропоколлагеновых субъединицах и между ними образуется все большее число поперечных связей, что делает фибриллы коллагена более жесткими и хрупкими, и это изменяет механические свойства хрящей и сухожилий, делает более ломкими кости и понижает прозрачность роговицы глаза.

4. Эластин. Содержится в желтой эластичной ткани связок и эластическом слое соединительной ткани в стенках крупных артерий. Основная субъединица фибрилл эластина – тропоэластин. Эластин богат глицином и аланином, содержит много лизина и мало пролина. Спиральные участки эластина растягиваются при натяжении, но возвращаются при снятии нагрузки к исходной длине. Остатки лизина четырех разных цепей образуют ковалентные связи между собой и позволяют эластину обратимо растягиваться во всех направлениях.

Глобулярные белки – белки, полипептидная цепь которых свернута в компактную глобулу, способны выполнять самые разнообразные функции.

Третичную структуру глобулярных белков удобнее всего рассмотреть на примере миоглобина. Миоглобин – это относительно небольшой кислород-связывающий белок, присутствующий в мышечных клетках. Он запасает связанный кислород и способствует его переносу в митохондрии. В молекуле миоглобина находится одна полипептидная цепь и одна гемогруппа (гем) – комплекс протопорфирина с железом. Основные свойства миоглобина:

а) молекула миоглобина настолько компактна, что внутри нее может уместиться всего 4 молекулы воды;

б) все полярные аминокислотные остатки, за исключением двух, расположены на внешней поверхности молекулы, причем все они находятся в гидратированном состоянии;

в) большая часть гидрофобных аминокислотных остатков расположена внутри молекулы миоглобина и, таким образом, защищена от соприкосно-вения с водой;

г) каждый из четырех остатков пролина в молекуле миоглобина находится в месте изгиба полипептидной цепи, в других местах изгиба расположены остатки серина, треонина и аспарагина, так как такие аминокислоты препятствуют образованию α-спирали, если находятся друг с другом;

д) плоская гемогруппа лежит в полости (кармане) вблизи поверхности молекулы, атом железа имеет две координационные связи, направленные перпендикулярно плоскости гемма, одна из них связана с остатком гистидина 93, а другая служит для связывания молекулы кислорода.

Начиная с третичной структуры белок становится способным выполнять свойственные ему биологические функции. В основе функционирования белков лежит то, что при укладке третичной структуры на поверхности белка образуются участки, которые могут присоединять к себе другие молекулы, называемые лигандами. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда. Комплементарность – это пространственное и химическое соответствие взаимодействующих поверхностей. Для большей части белков третичная структура – максимальный уровень укладки.

Четвертичная структура белка – характерна для белков, состоящих из двух и более полипептидных цепей, связанных между собой исключительно нековалентными связями, в основном электростатическими и водородными. Чаще всего белки содержат две или четыре субъединицы, более четырех субъединиц обычно содержат регуляторные белки.

Белки, имеющие четвертичную структуру, часто называются олигомерными. Различают гомомерные и гетеромерные белки. К гомо-мерным относятся белки, у которых все субъединицы имеют одинаковое строение, например, фермент каталаза состоит их четырех абсолютно одинаковых субъединиц. Гетеромерные белки имеют разные субъединицы, например, фермент РНК-полимераза состоит из пяти разных по строению субъединиц, выполняющих разные функции.

Взаимодействие одной субъединицы со специфическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других субъединиц к лигандам, это свойство лежит в основе способности олигомерных белков к аллостерической регуляции.

Четвертичную структуру белка можно рассмотреть на примере гемоглобина. Содержит четыре полипептидных цепи и четыре простетические группы гема, в которых атомы железа находятся в закисной форме Fe 2+ . Белковая часть молекулы – глобин – состоит из двух α-цепей и двух β-цепей, содержащих до 70% α-спиралей. Каждая из четырех цепей имеет характерную для нее третичную структуру, с каждой цепью связана одна гемогруппа. Гемы разных цепей сравнительно далеко расположены друг от друга и имеют разный угол наклона. Между двумя α-цепями и двумя β-цепями образуется мало прямых контактов, тогда как между α- и β-цепями возникают многочисленные контакты типа α 1 β 1 и α 2 β 2 , образованные гидрофобными радикалами. Между α 1 β 1 и α 2 β 2 остается канал.

В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду, что позволяет ему при существующих в тканях низких парциальных давлениях кислорода отдавать им значительную часть связанного кислорода. Кислород легче связывается железом гемоглобина при более высоких значениях рН и низкой концентрации СО 2 , свойственные альвеолам легких; освобождению кислорода из гемоглобина благоприятствуют более низкие значения рН и высокие концентрации СО 2 , свойственные тканям.

Кроме кислорода гемоглобин переносит ионы водорода, которые связываются с остатками гистидина в цепях. Также гемоглобин переносит углекислый газ, который присоединяет к концевой аминогруппе каждой из четырех полипептидных цепей, в результате чего образуется карбаминогемоглобин:

В эритроцитах в достаточно больших концентрациях присутствует вещество 2,3-дифосфоглицерат (ДФГ), его содержание увеличивается при подъеме на большую высоту и при гипоксии, облегчая высвобождение кислорода из гемоглобина в тканях. ДФГ располагается в канале между α 1 β 1 и α 2 β 2 , взаимодействуя с положительно зараженными группами β-цепей. При связывании гемоглобином кислорода ДФГ вытесняется из полости. В эритроцитах некоторых птиц содержится не ДФГ, а инозитолгекса-фосфат, который еще больше снижает сродство гемоглобина к кислороду.

2,3-дифосфоглицерат (ДФГ)

HbA – нормальный гемоглобин взрослого человека, HbF – фетальный гемоглобин, имеет большее сродство к О 2 , HbS – гемоглобин при серповидноклеточной анемии. Серповидноклеточная анемия – это серьезное наследственное заболевание, связанное с генетической аномалией гемоглобина. В крови больных людей наблюдается необычно большое количество тонких серповидных эритроцитов, которые, во-первых, легко разрываются, во-вторых, закупоривают кровеносные капилляры. На молеку-лярном уровне гемоглобин S отличается от гемоглобина А по одному аминокислотному остатку в положении 6 β-цепей, где вместо остатка глутаминовой кислоты находится валин. Таким образом, гемоглобин S содержит на два отрицательных заряда меньше, появление валина приводит к возникновению «липкого» гидрофобного контакта на поверхности молекулы, в результате при дезоксигенации молекулы дезоксигемоглобина S слипаются и образуют нерастворимые аномально длинные нитевидные агрегаты, приводящие к деформации эритроцитов.

Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка выше первичного, поскольку первичная структура определяет и вторичную, и третичную, и четвертичную (если она имеется). Нативной конформацией белка является термодинамически наиболее устойчивая в данных условиях структура.

Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.

Аминокислоты.

Аминокислоты - органические бифункциональные соединения, в состав которых входит карбоксильная группа -СООН , а аминогруппа - NH 2 .

Разделяют α и β - аминокислоты:

В природе встречаются в основном α -кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С 5 Н 9 NO 2 ):

Самая простая аминокислота - глицин. Остальные аминокислоты можно разделить на следующие основные группы:

1) гомологи глицина - аланин, валин, лейцин, изолейцин.

Получение аминокислот.

Химические свойства аминокислот.

Аминокислоты - это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы - аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:

Кислотно-основные превращение можно представить в виде:

В кислой среде α-аминокислоты выступают как основания (по аминогруппе), а в щелочной - как кислоты (по карбоксильной группе). У некоторых аминокислот может ионизироваться также радикал (R), в связи, с чем все аминокислоты можно разделить на заряженные и незаря­женные (при физиологическом значении рН=6,0 - 8,0) (см. табл. 4). В качестве примера первых можно привести аспарагиновую кислоту и ли­зин:

Если радикалы аминокислот нейтральные, то они не оказывают влияния на диссоциацию α-карбоксильной или α-аминогруппы, и вели­чинырК (отрицательный логарифм, показывающий значение рН, при котором эти группы наполовину диссоциированы) остаются относительно постоянными.

Величины рК для α-карбоксилыюй (pK 1) и α-аминогруппы (рК 2) сильно различаются. При рН < pK 1 почти все молекулы аминокислоты протежированы и заряжены положительно. Напротив, при рН > рК 2 прак­тически все молекулы аминокислоты являются отрицательно за­ряженными, так как α-карбоксильная группа находится в диссоции­рованном состоянии.

Следовательно, в зависимости от рН среды аминокислоты имеют суммарный нулевой положительный или отрицательный заряд. Значение рН, при котором суммарный заряд молекулы равен нулю, и она не перемещается в электрическом поле ни к катоду, ни к аноду, называется изоэлектрической точкой и обозначается pI.

Для нейтральных α-аминокислот значение pI находят как сред­нее арифметическое между двумя значениями рК:

При рН раствора меньше pI аминокислоты протонируются и, за­ряжаясь положительно, перемещаются в электрическом поле к катоду. Обратная картина наблюдается при рН > pI.

Для аминокислот, содержащих заряженные (кислотные или ос­новные) радикалы, изоэлектрическая точка зависит от кислотности или основности этих радикалов и их рК (рК 3). Значение pI для них находят по следующим формулам:

для кислых аминокислот:

для основных аминокислот:

В клетках и межклеточной жидкости организма человека и жи­вотных рН среды близко к нейтральному, поэтому основные аминокисло­ты (лизин, аргинин) имеют положительный заряд (катионы), кислые ами­нокислоты (аспарагиновая, глутаминовая) имеют отрицательный заряд (анионы), а остальные существуют в виде биполярного цвиттер-иона.

Стереохимия аминокислот

Важной особенностью белковых α-аминокислот является их оп­тическая активность. За исключением глицина все они построены асим­метрично, в связи с чем, будучи растворены в воде или в соляной кисло­те, способны вращать плоскость поляризации света. Аминокислоты суще­ствуют в виде пространственных изомеров, относящихся к D- или L-ряду. L- или D-конфигурация определяется типом строения соединения относительно асимметрического атома углерода (атом углерода, свя­занный с четырьмя различными атомами или группами атомов). В фор­мулах асимметрический атом углерода обозначают звездочкой. На рис.3 показаны проекционные модели L- и D- конфигураций аминокислот, ко­торые являются как бы зеркальным отображением друг друга. Все 18 оптически активных белковых аминокислот относятся к L -ряду. Однако в клетках многих микроорганизмов и в антибиотиках, продуцируемых некоторыми из них, обнаружены D-аминокислоты.

Рис. 3. Конфигурация L- и D- аминокислот

Строение белков

Исходя из результатов изучения продуктов гидролиза белков и выдвинутых А.Я. Данилевским идей о роли пептидных связей -CO-NH- в построении белковой молекулы, немецкий ученый Э.Фишер предложил в начале XX века пептидную теорию строения белков. Согласно этой тео­рии, белки представляют собой линейные полимеры α-аминокислот, свя­занных пептиднойсвязью - полипептиды:

В каждом пептиде один концевой аминокислотный остаток имеет свободную α-аминогруппу (N-конец), а другой - свободную α-карбок­сильную группу (С-конец). Структуру пептидов принято изображать, на­чиная с N-концевой аминокислоты. При этом аминокислотные остатки обозначаются символами. Например: Ala-Tyr-Leu-Ser-Tyr- - Cys. Этой записью обозначен пептид, в котором N-концевой α-аминокислотой яв­ ляется аланин, а С-концевой - цистеин. При чтении такой записи окончания названий всех кислот, кроме последних меняются на - "ил": аланил-тирозил-лейцил-серил-тирозил- -цистеин. Длина пептидной цепи в пептидах и белках, встречающихся в организме, колеблется от двух до сотен и тысяч аминокислотных остатков.

Для определения аминокислотного состава белки (пептиды) подвергают гидролизу:

В нейтральной среде эта реакция протекает очень медленно, но ускоряется в присутствии кислот или щелочей. Обычно гидролиз белков проводят в запаянной ампуле в 6М растворе соляной кислоты при 105 °С; в таких условиях полный распад происходит примерно за сутки. В неко­торых случаях белок гидролизуют в более мягких условиях (при темпера­туре 37-40 °С) под действием биологических катализаторов-ферментов в течение нескольких часов.

Затем аминокислоты гидролизата разделяют методом хромато­графии на ионообменных смолах (сульфополистирольный катионит), вы­деляя отдельно фракцию каждой аминокислоты. Для вымывания аминокис­лот с ионнообменной колонки используют буферы с возрастающим зна­чением рН. Первым снимается аспартат, имеющий кислотную боковую цепь; аргинин с основной боковой цепью вымывается последним. После­довательность снятия аминокислот с колонки определяют по профилю вымывания стандартных аминокислот. Фракционированные аминокислоты определяют по окраске, образующейся при нагревании с нингидрином:

В этой реакции бесцветный нингидрин превращается; в синефиолетовый продукт, интенсивность окраски которого (при 570 нм) пропорциональна количеству аминокислоты (только пролин дает желтое окрашивание). Измерив, интенсивность окрашивания, можно рассчитать концентрацию каждой аминокислоты в гидролизате и число остатков каждой из них в исследуемом белке.

В настоящее время такой анализ проводят с помощью автомати­ческих приборов - аминокислотных анализаторов (см. ниже рис. Схемы прибора). Результат ана­лиза прибор выдаёт в виде графика концентраций отдельных аминокис­лот. Этот метод нашел широкое применение в исследовании состава пищевых веществ, клинической практике; с его помощью за 2-3 часа можно получить полную картину качественного состава амино­кислот продуктов и биологических жидкостей.

Леонид Остапенко

Гормональные связи

Оказалось, что аминокислоты с разветвленными цепями могут не только предотвращать центральное утомление и распад мышечных структур, но способны также оставлять неблагоприятные гормональные колебания, вызванные интенсивным упражнением.

Например, один только лейцин способен стимулировать высвобождение и/или активацию гормона роста, соматомединов и инсулина. Это оказывает прямой анаболический и антикатаболический эффект на мышцу.

В опытах, проведенных в течение 1992 года (European Journal of Applied Physiology, 64: 272), исследователи обеспечивали испытуемых спортсменов коммерческим диетическим продуктом, содержащим 5,14 граммов лейцина, 2,57 граммов изолейцина и 2,57 граммов валина (соотношение 2:1:1). Кроме BCAA, в этот продукт были включены 12 граммов молочных протеинов, 20 граммов фруктозы, 8,8 граммов других карбогидратов и 1,08 граммов жира.

Цель ученых состояла в том, чтобы определить, могло ли бы дополнение BCAA воздействовать на гормональную реакцию, обнаруживаемую их субъектами (мужчинами-марафонцами) при беге с постоянной скоростью. Для того чтобы результаты опыта были "чистыми", атлеты голодали в течение 12 часов перед тестированием и принимали их смеси BCAA за 90 минут перед тестовым забегом.

Результаты опытов показали, что некоторые субъекты обнаруживали существенный подъем BCAA в их крови в течение нескольких часов после потребления смеси. Исследователи заключили, что BCAA могут с гарантией оказывать антикатаболическое влияние, потому что соотношение тестостерона к кортизолу - главный индикатор анаболического статуса - было улучшено. Вы знаете, что кортизол - это мощнейший катаболический гормон, повышенный уровень которого в организме буквально "пожирает" ваши с таким трудом взращенные мышцы.

В другом опыте (European Journal of Applied Physiology, 65: 394, 1992) исследователи давали шестнадцати скалолазам в целом 11,52 граммов BCAA - 5,76 граммов лейцина, 2,88 граммов изолейцина и 2,88 граммов валина каждый день. Результаты опыта блестяще подтвердили, что дополнение диеты с помощью BCAA помогало предотвращать потерю мышц, когда эти 16 человек совершали изнурительный переход через Перуанские Анды.

Честное слово, по-хорошему позавидуешь всем этим кроссовикам, марафонцам и альпинистам - все ученые занимаются ими, и только несчастный культурист вынужден на свой страх и риск вгонять в себя совершенно немыслимые сочетания всего того, что хотя бы на миг приблизило бы его заветную цель - стать сильным и большим! Но, кажется, мы отвлеклись на эмоции, а этого делать при серьезном разговоре нельзя... Вернемся к нашей теме.

Итак, BCAA оказались обладающими антикатаболическим воздействием и, следовательно, могут считаться ключевым фактором в повышении анаболической стимуляции. На этот счет имеется некоторая научная аргументация.

Один из серьезных опытов, проведенный американским ученым Ferrando и его коллегами в NASA в Хьюстоне, США, - был освещен в Journal of Parenteral and Enteral Nutrition (JPEN). Имейте в виду, что JPEN - главный журнал, мнение которого безоговорочно принимается ортодоксальными нутриционистами, - содержит многочисленные статьи о нутрициональной терапии, особенно в отношении аминокислот.

Этот опыт сравнивал влияние 11 г BCAA с влиянием 11 г трех незаменимых аминокислот (треонина, гистидина и метионина) на синтез протеина и расщепление его у 4 здоровых мужчин. Каждый дневная доза напитка с этими BCAA также включала 50 г карбогидратов.

В результате получены три важных наблюдения:

Первое - диетическое дополнение любой смесью аминокислот значительно увеличивало (в три-четыре раза) уровни соответствующей аминокислоты в крови.

Второе - добавление BCAA (но не другой аминокислотной формулы) значительно увеличивала внутриклеточные концентрации BCAA в мышце.

Третье (но с самым большим значением) - дополнение питания аминокислотами значительно угнетало во всем теле расщепление протеина (протеолиз) - при этом BCAA обеспечивали большую защиту, чем формулы "незаменимых" аминокислот.

По-моему, за результаты этого опыта мы вполне могли бы порадоваться вместе с множеством других людей, заинтересованных в такой защите своей мускулатуры.

Ложка дегтя

Нельзя, чтобы все время все было очень хорошо. Так в жизни не бывает. Не бывает этого и в мире биохимии, особенно, если речь идет об опытах.

Как мы уже знаем, нервная релаксация транслируется в преждевременное утомление в ходе тренировки, и одним из рекомендованных средств исправления этого состояния является прием аминокислотами с разветвленными цепями, или BCAA, перед тренировкой. Как упоминалось выше, триптофан конкурирует с другими аминокислотами за поступление в мозг, и обычно проигрывает большим нейтральным аминокислотам, таким, как BCAA. Прошлые исследования показали, что прием BCAA перед тренировкой отставляет совокупное влияние карбогидратов, инсулина и триптофана, таким образом отставляя нежелательное утомлению центральной нервной системы.

Однако недавно исследование, проведенное, к счастью, пока на крысах, оказалось противоречащим этой рекомендации. Группа крыс, которая принимала BCAA, показала значительный уровень утомления в течение физической нагрузки, и ученые заключили, что BCAA вызывают большее высвобождение инсулина, чем глюкоза, и это ведет к преждевременному утомлению за счет двух механизмов: 1) удаления инсулином глюкозы из крови; и 2) снижения темпа расщепления и высвобождения накопленного печеночного гликогена, который нужен для поддержания правильного уровня глюкозы крови.

Пока всего лишь теоретический урок, который следует извлечь из этого опыта, таков, что комбинация высокого уровня карбогидратов и высокого уровня BCAA перед занятиями может вызвать преждевременное утомление в ходе тренировки, особенно при нагрузке, длящейся более двух часов. После тренировки, конечно, эта ситуация развивается в обратном порядке. Вот когда вам нужен мощный приток инсулина для содействия синтезу мышечного протеина. В действительности, если вы принимаете добавку, подобную одному из метаболических оптимизаторов, богатую и карбогидратами, и BCAA, вам нужно было бы принимать ее после вашего тренинга, если вы хотите сохранить высокий уровень энергии в ходе тренировки. К счастью, это только предположения, и они нуждаются в проверке, а пока все атлеты элитного уровня, принимающие аминокислоты с разветвленными цепями и до, и после тренировок, отмечают позитивные сдвиги и в энергии, и в сохранении мышечной массы.

Как и когда принимать BCAA

Стандартные рекомендации по поводу момента приема BCAA - периоды непосредственно перед и после тренировочного занятия. В пределах получаса до тренировки очень полезно принять пару капсул этих аминокислот. Они подстрахуют вас, на случай, если у вас маловато гликогена в мышцах и печени, так чтобы вам не пришлось расплачиваться расщеплением ценных аминокислот, из которых состоят ваши мышечные клетки.

Естественно, после тренировки, когда уровень аминокислот и глюкозы в крови достигают очень низких отметок, их нужно немедленно возмещать, ибо только восстановив энергопотенциал клетки, можно рассчитывать на то, что она начнет разворачивать пластические процессы, то есть регенерацию и суперрегенерацию сократительных элементов.

Наиболее благоприятным периодом для такого возмещения являются первые полчаса после занятия. Сразу же после занятия примите еще пару капсул BCAA, чтобы продолжающийся по инерции повышенный темп обменных процессов не "сожрал" в интересах ликвидации энергетической ямы ценные, строящие мышечные клетки аминокислоты.

Ли Хэйни, один из "долгожителей" на троне Mr. Olympia, например, принимал после тяжелых тренировок смесь валина, лейцина и изолейцина в соотношении 2:2:1, а в абсолютных величинах это выражалось в 5 граммах валина и лейцина, и 2,5 граммах изолейцина, а после аэробных тренировок эта дозировка снижалась наполовину.

Некоторые специалисты полагают, что идеальное время для приема добавок BCAA - немедленно после еды, что помогает вам сохранять высокие уровни инсулина, и немедленно после каждой тренировки, что ускоряет поступление BCAA в ваши изголодавшиеся мышцы, когда они находятся в истощенном состоянии. Следует, однако, принимать их с некоторой формой комплексных карбогидратов в одно и то же время, однако не с простыми сахарами, которые неэффективны для восстановления мышечного гликогена. В любом случае, вам никогда не следует принимать BCAA на пустой желудок - в этом единодушны практически все исследователи и практики.

Есть еще некоторые хитрости, без знания которых даже самые мощные дозировки BCAA не "сыграют" вам на руку. Пожалуйста, имейте в виду, что главным моментом в усвоении любых аминокислот является повышенный сахар в крови и инсулин. Вне всякого сомнения, инсулин является главным анаболическим гормоном в теле. Вопрос в том, как наилучше скомбинировать высокие уровни инсулина с BCAA?

Прежде всего, позаботьтесь, чтобы в вашей диете и плане добавок присутствовали важные кофакторы. Одним из наиболее важных из этих кофакторов является хром, и наиболее желательная форма этого микроэлемента - пиколинат хрома. Хром увеличивает эффективность инсулина, а поскольку инсулин транспортирует аминокислоты в ваши мышцы, вы будете получать результаты, ниже идеальных, когда принимаете BCAA, испытывая недостаточность в хроме.

Другие важные кофакторы включают цинк, который является регулятором инсулина, витамины B6 и B12, которые важны для метаболизма протеина, а также биотин. Значительная доля этих кофакторов будет поступать из хорошей чистой диеты. Но даже при этом неплохо также принимать хорошие формулы мультивитаминов и мультиминералий для подстраховки, в случае, если вы получаете недостаточное их количество.

Безусловно, для того, чтобы BCAA работали эффективно, вам следует ориентироваться на их комплексные добавки, включающие все три из указанных аминокислот. Они все должны присутствовать в одно и то же время для того, чтобы обеспечить максимальное их усвоение мышечной системой.

Сколько принимать и от каких фирм

Вопрос последний, но самый важный и самый трудный. Никто не знает, сколько нужно принимать; ни один из научных опытов, с результатами которых мы знакомились, не мог не только категорически, но даже в рекомендательном плане назвать ни соотношения между отдельными BCAA в их комплексе, ни суточные или разовые дозировки. Каждый из чемпионов, участвующий в рекламе той или иной аминокислотной добавки, утверждает, что именно то, что принимал он, и является самым лучшим. Мне кажется, что это вполне естественно. Ведь индивидуальные особенности пищеварения и усвоения настолько специфичны у каждого человека, что одному из вас лучше всего будет помогать аминокислотная формула фирмы Twinlab , тогда как другой будет в восторге от фирмы Weider , а третий будет с пеной у рта доказывать, что нет ничего лучше, чем аминокислоты фирмы Multipower . Забавнее всего то, что все они будут правы, ибо та или иная конкретная аминокислотная формула превосходно "вписалась" в особенности его организма!

Поэтому экспериментируйте, друзья, за вами будущее, и сообщайте нам о том, препараты каких фирм вам показались наиболее эффективными, в какой дозировке, в какое время суток и так далее. Чем больше мы сумеем собрать таких материалов, тем точнее сумеем определиться в оптимальных для культуристов дозах и схемах приема.

Успеха вам в вашей исследовательской деятельности!

Общая характеристика (строение, классификация, номенклатура, изомерия).

Основной структурной единицей белков являются a-аминокислоты. В природе встречается примерно 300 аминокислот. В составе белков найдено 20 различных a-аминокислот (одна из них – пролин, является не амино -, а имино кислотой). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у a-углеродного атома замещен на аминогруппу (–NН 2), например:

Различаются аминокислоты по строению и свойствам радикала R. Радикал может представлять остатки жирных кислот, ароматические кольца, гетероциклы. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме.

Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимером, и обладают химической индивидуальностью.

Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например:

Классификация и номенклатура аминокислот.

Существует несколько видов классификаций аминокислот входящих в состав белка.

А) В основу одной из классификаций положено химическое строение радикалов аминокислот. Различают аминокислоты:

1. Алифатические – глицин, аланин, валин, лейцин, изолейцин:

2. Гидроксилсодержащие – серин, треонин:

4. Ароматические – фенилаланин, тирозин, триптофан:

5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:

6. и амиды-аспарагиновой и глутаминовой кислот – аспарагин, глутамин.

7. Основные – аргинин, гистидин, лизин.

8. Иминокислота – пролин


Б) Второй вид классификации основан на полярности R-групп аминокислот.

Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.

Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

В) Аминокислоты классифицируют и на основе ионных свойств R-групп (таблица 1).

Кислые (при рН=7 R-группа может нести отрицательный заряд) это аспарагиновая, глутаминовая кислоты, цистеин и тирозин.

Основные (при рН=7 R-группа может нести положительный заряд) – это аргинин, лизин, гистидин.

Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).

Таблица 1 – Классификация аминокислот на основе полярности
R-групп.

3. Отрицательно заряженные
R-группы

Аспарагиновая к-та

Глутаминовая к-та

4. Положительно заряженные
R-группы

Гистидин

GLy ALa VaL Leu Lie Pro Phe Trp Ser Thr Cys Met Asn GLn Tyr Asp GLy Lys Arg His G A V L I P F W S T C M N Q Y D E K R N Гли Ала Вал Лей Иле Про Фен Трп Сер Тре Цис Мет Асн Глн Тир Асп Глу Лиз Арг Гис 5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88 5,68 6,53 5,02 5,75 5,41 5,65 5,65 2,97 3,22 9,74 10,76 7,59 7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1 7,1 6,0 2,8 1,7 4,4 3,9 3,5 5,5 6,2 7,0 4,7 2,1

Г) По числу аминных и карбоксильных групп аминокислоты делятся:

на моноаминамонокарбоновые , содержащие по одной карбоксильной и аминной группе;

– моноаминодикарбоновые (две карбоксильные и одна аминная группа);

– диаминомонокарбоновые (две аминные и одна карбоксильная группа).

Д) По способности синтезироваться в организме человека и животных все аминокислоты делятся:

на заменимые,

– незаменимые,

– частично незаменимые .

Незаменимые аминокислоты не могут синтезироваться в организме человека и животных они обязательно должны поступать вместе с пищей. Абсолютно незаменимых аминокислот восемь: валин, лейцин,изолейцин,треонин,триптофан, метионин,лизин, фенилаланин.

Частично незаменимые - синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин, тирозин.

Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.

Изомерия

В молекулах всех природных аминокислот (за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома . Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Число возможных стереоизомеров ровно 2 n , где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров.

В качестве стандарта при определении L и D -конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида.

Расположение в проекционной формуле Фишера NH 2 -группы слева соответствуют L -конфигурации, а справа – D -конфигурации.

Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения.

Кроме 20 стандартных аминокислот встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными (гидроксипролин и гидроксилизин).

Методы получения

– Аминокислоты имеют чрезвычайно большое физиологическое значение. Из остатков аминокислот построены белки и полипептиды.

При гидролизе белковых веществ животных и растительных организмов образуются аминокислоты.

Синтетические способы получения аминокислот:

Действие аммиака на галоидзамещённые кислоты

– α-Аминокислоты получают действием аммиака на оксинит-рилы