Химическая связь характеристики типы примеры. Типы химических связей. Особенности ионной связи

БК Леон является ведущим онлайн-букмекером на гемблинговом рынке. Компания повышенное внимание уделяет бесперебойной работе сервиса. Также постоянно совершенствуется функционал портала. Для удобства пользователей создано зеркало Леон.

Перейти на зеркало

Что такое зеркало Леон.

Для получения доступа к официальному порталу БК Leon, необходимо воспользоваться зеркалом. Пользователю рабочее зеркало предоставляет множество преимуществ таких, как:

  • разнообразная линейка спортивных мероприятий, которые имеют высокие коэффициенты;
  • предоставление возможности игры в режиме Live, смотреть матчи будет интересным занятием;
  • подробный материал относительно проведенных соревнований;
  • удобный интерфейс, с которым быстро разберется даже неопытный пользователь.

Рабочее зеркало представляет собой копию официального портала. Он имеет идентичную функциональность и синхронную базу данных. За счет этого данные учетной записи не меняются. Разработчиками предусмотрена возможность блокировки рабочего зеркала, на такой случай предоставляется иное. Данные точные копии рассылаются и контролируются сотрудниками БК Леон. Если воспользоваться функционирующим зеркалом, то можно получить доступ к официальному порталу БК Леон.

Пользователю не составит трудностей найти зеркало, так как их список подлежит обновлению. При закрытом доступе от посетителя сайта требуется выполнить установку приложения Леон для мобильного телефона на компьютер. Также нужно поменять IP на иную страну за счет VPN. Для изменения местоположения пользователя или провайдера нужно воспользоваться TOP-браузером.

Разработчики предусмотрели различные возможности пользования зеркалом. Для этого с правой стороны сайта имеется надпись “Доступ к сайту”, зеленая кнопка “Обход блокировок” позволяет игроку зайти в подменю и добавить универсальную закладку в браузер.

Также удобство пользователю предоставляет мобильное приложение. Если необходимо узнать о новом адресе зеркала портала, можно позвонить по бесплатному телефону. Получать доступ к зеркалу позволяет канал @leonbets_official на Telegram . Приложение Leonacsess для Windows позволяет всегда получить доступ к сайту. Данные способы дают возможность получить игроку доступ к рабочему зеркалу.

Почему заблокировали основной сайт Леон

Это происходит вследствие действий службы Роскомнадзора. Это связано с отсутствием лицензии на ведение букмекерской деятельности. Синий Leon не получил лицензию, чтобы игрок не платил с выигрыша 13%.

Как зарегистрироваться на зеркале Леонбетс

Зарегистрироваться на этом сайте значительно проще, чем официально. Пользователю не требуется регистрироваться на двух порталах, что занимает до двух дней. Если отдать предпочтение рабочему зеркалу, то данная процедура будет максимально простой.

Для этого пользователю понадобится только заполнить данные относительно Ф. И. О., контакты. Также необходимо определиться с валютой, указать дату рождения и домашний адрес. Также нужно подписаться на рассылку сообщений. Это позволит оперативно получать информацию от букмекеров. Зарегистрированный пользователь получает возможность иметь доступ к личному кабинету, что позволяет произвести ставку на матчи, мероприятия. При возникновении сложностей можно обратиться в службу технической поддержки.

Рис.1. Орбитальные радиусы элементов (r a) и длина одноэлектронной химической связи (d)

Простейшая одноэлектронная химическая связь создаётся единственным валентным электроном . Оказывается, что один электрон способен удерживать в едином целом два положительно заряженных иона. В одноэлектронной связи кулоновские силы отталкивания положительно заряженных частиц компенсируются кулоновскими силами притяжения этих частиц к отрицательно заряженному электрону. Валентный электрон становится общим для двух ядер молекулы.

Примерами таких химических соединений являются молекулярные ионы: H 2 + , Li 2 + , Na 2 + , K 2 + , Rb 2 + , Cs 2 + :

Полярная ковалентная связь возникает в гетероядерных двухатомных молекулах (рис.3). Связывающая электронная пара в полярной химической связи приближена к атому с более высоким первым потенциалом ионизации .

Характеризующее пространственную структуру полярных молекул расстояние d между атомными ядрами можно приближённо рассматривать как сумму ковалентных радиусов соответствующих атомов.

Характеристика некоторых полярных веществ

Сдвиг связывающей электронной пары к одному из ядер полярной молекулы приводит к появлению электрического диполя (электродинамика) (рис.4).

Расстояние между центрами тяжести положительного и отрицательного зарядов называют длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной дипольного момента μ, представляющего собой произведение длины диполя l на величину электронного заряда :

Кратные ковалентные связи

Кратные ковалентные связи представлены непредельными органическими соединениями, содержащими двойную и тройную химические связи. Для описания природы непредельных соединений Л.Полинг вводит понятия сигма- и π-связей, гибридизации атомных орбиталей .

Гибридизация Полинга для двух S- и двух p- электронов позволила объяснить направленность химических связей, в частности тетраэдрическую конфигурацию метана . Для объяснения структуры этилена из четырёх равноценных Sp 3 - электронов атома углерода приходится вычленять один p-электрон для образования дополнительной связи, получившей название π-связи. При этом три оставшиеся Sp 2 -гибридные орбитали располагаются в плоскости под углом 120° и образуют основные связи, например, плоскую молекулу этилена (рис.5).

В новой теории Полинга все связывающие электроны становились равноценными и равноудалёнными от линии, соединяющей ядра молекулы. Теория изогнутой химической связи Полинга учитывала статистическую интерпретацию волновой функции М.Борна , кулоновскую электронную корреляцию электронов . Появился физический смысл - природа химической связи полностью определяется электрическим взаимодействием ядер и электронов. Чем больше связывающих электронов, тем меньше межъядерное расстояние и прочнее химическая связь между атомами углерода.

Трёхцентровая химическая связь

Дальнейшее развитие представлений о химической связи дал американской физикохимик У.Липскомб , разработавший теорию двухэлектронных трёхцентровых связей и топологическую теорию, позволяющую предсказывать строение ещё некоторых гидридов бора (бороводородов) .

Электронная пара в трёхцентровой химической связи становится общей для трёх ядер атомов. В простейшем представителе трёхцентровой химической связи - молекулярном ионе водорода H 3 + электронная пара удерживает в едином целом три протона (рис.6).

Рис.7.Диборан

Существование боранов с их двухэлектронными трёхцентровыми связями с «мостиковыми» атомами водорода нарушало каноническое учение о валентности . Атом водорода, считавшийся ранее стандартным одновалентным элементом, оказался связанным одинаковыми связями с двумя атомами бора и стал формально двухвалентным элементом. Работы У.Липскомба по расшифровке строения боранов расширяли представления о химической связи. Нобелевский комитет удостоил Уильяма Нанна Липскомба премии по химии за 1976 год с формулировкой "За исследования структуры боранов (боргидритов), проясняющие проблемы химических связей).

Многоцентровая химическая связь

Рис.8.Молекула ферроцена

Рис.9.Дибензолхром

Рис.10.Ураноцен

Все десять связей (C-Fe) в молекуле ферроцена равноценны, величина межъядерного расстояния Fe-c - 2,04 Å. Все атомы углерода в молекуле ферроцена структурно и химически эквивалентны, длина каждой связи C-C 1,40 - 1,41 Å (для сравнения, в бензоле длина связи C-C 1,39 Å). Вокруг атома железа возникает 36- электронная оболочка .

Динамика химической связи

Химическая связь достаточно динамична. Так, металлическая связь трансформируется в ковалентную в процессе фазового перехода при испарении металла. Переход металла из твёрдого в парообразное состояние требует затраты больших количеств энергии.

В парах указанные металлы состоят практически из гомоядерных двухатомных молекул и свободных атомов. При конденсации паров металла ковалентная связь превращается в металлическую.

Испарение солей с типичной ионной связью, например фторидов щелочных металлов, приводит к разрушению ионной связи и образованию гетероядерных двухатомных молекул с полярной ковалентной связью. При этом имеет место образование димерных молекул с мостиковыми связями.

Характеристика химической связи в молекулах фторидов щелочных металлов и их димерах.

При конденсации паров фторидов щелочных металлов полярная ковалентная связь трансформируется в ионную с образованием соответствующей кристаллической решётки соли.

Механизм перехода ковалентной в металлическую связь

Рис.11. Соотношение между радиусом орбитали электронной пары r e и длиной ковалентной химической связи d

Рис.12.Ориентация диполей двухатомных молекул и образование искажённого октаэдрического фрагмента кластера при конденсации паров щелочных металлов

Рис.13.Объёмноцентрированное кубическое расположение ядер в кристаллах щелочных металлов и связывающего звена

Дисперсное притяжение (силы Лондона) обуславливает межатомное взаимодействие и образование гомоядерных двухатомных молекул из атомов щелочных металлов.

Образование ковалентной связи металл-металл сопряжено с деформацией электронных оболочек взаимодействующих атомов - валентные электроны создают связывающую электронную пару, электронная плотность которой концентрируется в пространстве между атомными ядрами возникшей молекулы. Характерной особенностью гомоядерных двухатомных молекул щелочных металлов является большая длина ковалентной связи (в 3,6-5,8 раза больше длины связи в молекуле водорода) и низкая энергия её разрыва.

Указанное соотношение между r e и d определяет неравномерность распределения электрических зарядов в молекуле - в средней части молекулы сосредоточен отрицательный электрический заряд связывающей электронной пары, а на концах молекулы - положительные электрические заряды двух атомных остовов.

Неравномерность распределения электрических зарядов создаёт условия взаимодействия молекул за счёт ориентационных сил (силы Ван-дер-Ваальса). Молекулы щелочных металлов стремятся ориентироваться таким образом, чтобы по сосоедству оказывались разноимённые электрические заряды. В результате между молекулами действуют силы притяжения. Благодаря наличию последних, молекулы щелочных металлов сближаются и более менее прочно стягиваются между собой. Одновременно происходит некоторая деформация каждой из них под действием ближе расположенных полюсов соседних молекул (рис.12).

Фактически, связывающие электроны исходной двухатомной молекулы, попадая в электрическое поле четырёх положительно заряженных атомных остовов молекул щелочных металлов отрываются с орбитального радиуса атома и становятся свободными.

При этом связывающая электронная пара становится общей уже для системы с шестью катионами. Начинается построение кристаллической решётки металла на этапе кластера . В кристаллической решётке щелочных металлов чётко выражена структура связывающего звена, имеющего форму искажённого сплющенного октаэдра - квадратной бипирамиды, высота которой и рёбра базиса равны величина постоянной трансляционной решётки a w (рис.13).

Величина постоянной трансляционной решётки a w кристалла щелочного металла значительно превышает длину ковалентной связи молекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:

Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с «поверхностью Ферми », которую следует рассматривать как геометрическое место, где пребывают электроны, обеспечивая основное свойство металла - проводить электрический ток .

При сопоставлении процесса конденсации паров щелочных металлов с процессом конденсации газов, например, водорода, проявляется характерная особенность в свойствах металла. Так, если при конденсации водорода проявляются слабые межмолекулярные взаимодействия, то при конденсации паров металла протекают процессы, характерные для химических реакций. Сама конденсация паров металла идёт в несколько стадий и может быть описана следующей процессией: свободный атом → двухатомная молекула с ковалентной связью → металлический кластер → компактный металл с металлической связью.

Взаимодействие молекул галогенидов щелочных металлов сопровождается их димеризацией. Димерную молекулу можно рассматривать как электрический квадруполь (рис.15). В настоящее время известны основные характеристики димеров галогенидов щелочных металлов (длины химической связи и валентные углы между связями).

Длина химической связи и валентные углы в димерах галогенидов щелочных металлов (Э 2 X 2)(газовая фаза).

Э 2 X 2 X=F X=Cl X=Br X=I
d ЭF , Å d ЭCl , Å d ЭBr , Å d ЭI , Å
Li 2 X 2 1,75 105 2,23 108 2,35 110 2,54 116
Na 2 X 2 2,08 95 2,54 105 2,69 108 2,91 111
K 2 X 2 2,35 88 2,86 98 3,02 101 3,26 104
Cs 2 X 2 2,56 79 3,11 91 3,29 94 3,54 94

В процессе конденсации действие ориентационных сил усиливается, межмолекулярное взаимодействие сопровождается образованием кластеров, а затем и твёрдого вещества. Галогениды щелочных металлов образуют кристаллы с простой кубической и объёмно-центрированной кубической решёткой.

Тип кристаллической решётки и постоянная трансляционной решётки для галогенидов щелочных металлов.

В процессе кристаллизации происходит дальнейшее увеличение межатомного расстояния, приводящее к срыву электрона с орбитального радиуса атома щелочного металла и передаче электрона атому галогена с образованием соответствующих ионов. Силовые поля ионов равномерно распределяются во всех направлениях в пространстве. В связи с этим в кристаллах щелочных металлов силовое поле каждого иона координирует отнюдь не один ион с противоположным знаком, как принято качественно представлять ионную связь (Na + Cl -).

В кристаллах ионных соединений понятие простых двухионных молекул типа Na + Cl - и Cs + Cl - теряет смысл, поскольку ион щелочного металла связан с шестью ионами хлора (в кристалле хлористого натрия) и с восемью ионами хлора (в кристалле хлористого цезия. При этом все межионные расстояния в кристаллах равноудалены.

Примечания

  1. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 124. - 320 с.
  2. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 132-136. - 320 с.
  3. Ганкин В.Ю., Ганкин Ю.В. Как образуется химическая связь и протекают химические реакции. - М .: издат.группа "Граница", 2007. - 320 с. - ISBN 978-5-94691296-9
  4. Некрасов Б. В. Курс общей химии. - М .: Госхимиздат, 1962. - С. 88. - 976 с.
  5. Паулинг Л. Природа химической связи / под редакцией Я.К.Сыркина. - пер. с англ. М.Е.Дяткиной. - М.-Л.: Госхимиздат, 1947. - 440 с.
  6. Теоретическая органическая химия / под ред. Р.Х.Фрейдлиной. - пер. с англ. Ю.Г.Бунделя. - М .: Изд. иностранной литературы, 1963. - 365 с.
  7. Леменовский Д.А., Левицкий М.М. Российский химический журнал (журнал Российского химического общества им. Д.И.Менделеева). - 2000. - Т. XLIV, вып.6. - С. 63-86.
  8. Химический энциклопедический словарь / гл. ред. И.Л.Кнунянц. - М .: Сов. энциклопедия, 1983. - С. 607. - 792 с.
  9. Некрасов Б. В. Курс общей химии. - М .: Госхимиздат, 1962. - С. 679. - 976 с.
  10. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 155-161. - 320 с.
  11. Гиллеспи Р. Геометрия молекул / пер. с англ. Е.З. Засорина и В.С. Мастрюкова, под ред. Ю.А Пентина. - М .: «Мир», 1975. - С. 49. - 278 с.
  12. Справочник химика. - 2-е изд., перераб. и доп. - Л.-М.: ГНТИ Химической литературы, 1962. - Т. 1. - С. 402-513. - 1072 с.
  13. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ.. - М .: «Химия», 1987. - С. 132-136. - 320 с.
  14. Зиман Дж. Электроны в металлах (введение в теорию поверхностей Ферми). Успехи физических наук.. - 1962. - Т. 78, вып.2. - 291 с.

См. также

  • Химическая связь - статья из Большой советской энциклопедии
  • Химическая связь - Chemport.ru
  • Химическая связь - Физическая Энциклопедия

зависимость изменения энергии связывания от межъядерного расстояния

Химическая связь - межатомное взаимодействие, обусловленное перекрыванием внешних электронных оболочек атомов сопровождающееся понижением общей энергии образовавшейся системы. Химическая связь может образовываться путем предоставления от каждого из атомов по одному или нескольким неспаренным электронам (кратные связи) с образованием электронных пар (ковалентная связь), либо при доминировании одним атомом электронной пары, а другим атомом вакантной электронной орбитали (донорно-акцепторная связь). В образовании химической связи участвуют только электроны внешней электронной оболочки, а внутренние электронные уровни не затрагиваются. В результате, при образовании химической связи у каждого атома образуется заполненная электронная оболочка внешнего электронного уровня, состоящая из двух (дуплет) или восьми (октет) электронов. Химическая связь характеризуется длиной и энергией. Длина химической связи это расстояние между ядрами связанных атомов. Энергия химической связи показывает сколько необходимо затратить энергии на разведение двух атомов, между которыми существует химическая связь, на расстояние, при котором эта химическая связь будет разорвана.

Возникновение химической связи и изменение энергии, происходящие при этом, можно описать следующей моделью. Первоначально атомы разведены на большое расстояние и энергия их взаимодействия близка к нулю. При сближении атомов между ними возникает слабое взаимодействие. Когда межъядерное расстояние становится сравнимым с радиусами электронных оболочек атомов, между атомами возникают два конкурирующих процесса. С одной стороны происходит взаимное притяжение между разноименно заряженными ядрами одного атома и электронами другого атома, а с другой стороны происходит взаимное отталкивание между одноименно заряженными ядрами и электронными оболочками обоих атомов. На определенном расстоянии ( r 0 {\displaystyle {\mbox{r}}_{0}} ) силы отталкивания и притяжения между двумя атомами выравниваются, наблюдается минимум потенциальной энергии образовавшейся системы из двух атомов ( E 1 {\displaystyle {\mbox{E}}_{1}} ) и происходит образование химической связи.

Валентность

Валентность (от латинского valentia - сила) - способность атома образовывать определенное количество химических связей с другими атомами. В различных соединениях атомы одного и того же элемента могут проявлять различную валентность. Валентность атома определяется числом неспаренных электронов в основном или возбужденном состоянии, участвующих в образовании химической связи с другим атомом.

Виды химических связей

Ковалентная связь

Теория ковалентной связи , основанная Гильбертом Льюисом в 1916 году, заключалась в том, что химическая связь возникает в результате образования общей электронной пары между взаимодействующими атомами.

Характеризует увеличение электронной плотности между ядрами связанных атомов. Каждый атом предоставляет один или несколько электронов для образования химической связи. Происходит образование общих электронных пар, достраивающих электронные уровни обоих атомов. В зависимости от того, сколько электронов способен предоставить каждый атом происходит образование одной (одинарная) или нескольких (кратная) электронных пар. В результате на прямой, соединяющей два атомных ядра происходит увеличение электронной плотности, к которой притягиваются атомные ядра. Идеальная ковалентная связь характерна только для двух одинаковых атомов. Например , N 2 {\displaystyle {\mbox{N}}_{2}} . В случае Cl 2 {\displaystyle {\mbox{Cl}}_{2}} , каждый из атомов хлора, имеющих на внешней электронной оболочке семь электронов и которым для образования завершенной электронной оболочки не хватает одного электрона, предоставляет один неспаренный электрон для образования электронной пары, которая равномерно распределена между этими двумя атомами. У атома азота на внешнем электронном уровне находится 5 электронов, из которых три неспаренных, и ему не хватает 3 электронов для получения завершенной октетной оболочки. Каждый атом азота предоставляет по три электрона для образования трех электронных пар, которые также равномерно распределены между атомами и происходит образование тройной связи (кратная ковалентная связь). В случае разных атомов электронная плотность смещена в сторону более электроотрицательного атома, то есть к тому атому, который более сильно притягивает к себе электроны. В таком случае говорят о поляризации химической связи. В этом случае на одном из атомов, который более электроотрицателен, возникает частично отрицательный заряд, а на другом атоме - частично положительный заряд. Наглядным примером поляризованной ковалентной связи может служить молекула монооксида углерода - CO. Углерод и кислород предоставляют по 2 электрона для образования связи реализуя таким образом двойную связь. В то же время электронная плотность смещена в сторону атома кислорода как к более электроотрицательному атому и на нем формируется частичный отрицательный заряд. Соответственно на атоме углерода образуется частичный положительный заряд.

Ионная связь

пример ионной связи

Ионная связь является крайним случаем поляризованной ковалентной связи, когда общая электронная пара полностью принадлежит одному из атомов. В таком случае на одном из атомов реализуется полностью положительный заряд, а на другом - полностью отрицательный. Такой тип связи характерен для солей. Например, хлорид натрия - NaCl. Каждый из атомов предоставляет по одному электрону для образования общей электронной пары. Однако Cl полностью смещает к себе образовавшуюся электронную пару и тем самым приобретает полный отрицательный заряд, а Na, не имеющий в таком случае на внешнем электронном уровне ни одного электрона, имеет полный положительный заряд.

Донорно-акцепторная связь

Донорно-акцепторная связь является частным случаем ковалентной связи. Механизм образования такой связи заключается в том, что собственная электронная пара одного атома (донора) переходит в общее пользование донора и другого атома, который предоставляет свободную орбиталь (акцептора). Такой тип связи хоршо иллюстрирует образование иона аммония - NH 4 + {\displaystyle {\mbox{NH}}_{4}{^{+}}} . Атом азота предоставляет по одному электрону трем атомам водорода для образования ковалентной связи. При этом у азота остается собственная неподеленная электронная пара, которую он может предоставить для образования связи с ионом водорода, у которого нет электрона, но есть незаполненный электронный уровень. В качестве доноров электронных пар обычно выступают атомы с большим количеством электронов, но имеющие небольшое число неспаренных электронов. Например: азот, кислород, фосфор, сера.

Металлическая связь

Металлическая связь характерна только для металлов и их сплавов. Атомы металла образуют остов, каркас кристаллической решетки. Электроны металлов, имеющих малое количество валентных электронов и их достаточно слабую связь с ядром, способны легко от них отрываться, образуя так называемый электронный газ. В результате атомы металла, находящиеся в узлах кристаллической решетки имеют положительный заряд, а оторвавшиеся валентные электроны свободно перемещаются между узлами решетки и связывают ионы металла. В свою очередь, положительно заряженные ионы металла не позволяют рассеиваться электронам за пределы кристаллической решетки. Наличие свободных подвижных электронов обуславливает такие свойства металлов как высокая электро- и теплопроводность. Пластичность металлов объясняется тем, что при деформации происходит смещение ионов металла относительно друг друга без разрыва связи. Также металлическая связь сохраняется не только в кристаллах, но и в расплавах металлов.

Водородная связь и ван-дер-ваальсово взаимодействие

Данные виды связи лишь условно можно назвать химическими и правильней их относить к межмолекулярным и внутримолекулярным взаимодействиям.

Водородная связь возникает между связанным атомом водорода одной молекулы и электроотрицательным атомом другой молекулы. Водородная связь имеет частично электростатическую, а частично донорно-акцепторную природу. Наглядным примером реализации такой связи может служить объединение нескольких молекул воды в кластеры. В молекуле воды атом кислорода смещает на себя электронную плотность приобретая частичный отрицательный заряд, а водород соответственно - частично положительный и может взаимодействовать с неподеленной электронной парой кислорода соседней молекулы. Водородная связь может возникать не только между разными молекулами, но и внутри самой молекулы. Благодаря внутримолекулярной водородной связи возможно образование спиральной структуры ДНК.

Ван-дер-ваальсово взаимодействие возникает за счет возникновения наведенных дипольных моментов. Такой вид взаимодействия может возникать как между разными молекулами, так и внутри одной молекулы между соседними атомами за счет возникновения дипольного момента у атомов при движении электронов. Ван-дер-ваальсово взаимодействие может быть притягивающим и отталкивающим. Межмолекулярное взаимодействие носит характер притяжения, а внутримолекулярное - отталкивания. Внутримолекулярное ван-дер-ваальсово взаимодействие оказывает существенный вклад в геометрию молекулы.

Заключение

При всей кажущейся простоте классификации химических связей не всегда удается правильное отнесение. Например в ИЮПАК идет обсуждение о пересмотре природы водородной связи и отнесение ее только как к разновидности ковалентной связи (). Кроме того существуют примеры соединений не вписывающиеся в рамки классической теории образования химических связей и валентности. Таких соединений очень много в элементоорганической химии. Например карборан имеет в своем составе атомы углерода, которые в классической теории валентных связей должны быть шести валентными (1 связь с протоном, 4 или 5 связей с атомами бора и 2 или 1 связь с углеродом в зависимости от строения карборана) , чего не может быть (на внешнем электронном уровне 4 электрона). Однако было введено понятие двух электронной трехцентровой связи, когда электронная пара принадлежит не двум атомам, а как бы равномерно размазана между тремя атомами, что позволяет обойти это несоответствие.

m определение химической связи;

m типы химических связей;

m метод валентных связей;

m основные характеристики ковалентной связи;

m механизмы образования ковалентной связи;

m комплексные соединения;

m метод молекулярных орбиталей;

m межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

1.) Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

2.) Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

3.) Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

4.) Ионная связь не направленная.

5.) Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллах RbCl, KCl, NaCl и NaF она равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

1.) Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

2.) Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

3.) Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

4.) При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи , l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.


Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи, r – расстояние между ядрами, l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).

МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ.

В основе метода ВС лежат следующие положения:

1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.

2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Для наглядного изображения валентных схем обычно пользуются следующим способом: электроны, находящиеся во внешнем электронном слое обозначают точками, располагаемыми вокруг химического символа атома. Общие для двух атомов электроны показывают точками, помещаемыми между их химическими символами; двойная или тройная связь обозначается соответственно двумя или тремя парами общих точек:

N: 1s 2 2s 2 p 3 ;

C: 1s 2 2s 2 p 4

Из приведенных схем видно, что каждая пара электронов, связывающая два атома, соответствует одной черточке, изображающей ковалентную связь в структурных формулах:

Число общих электронных пар, связывающих атом данного элемента с другими атомами, или, иначе говоря, число образуемых атомом ковалентных связей, называется ковалентностью по методу ВС. Так, ковалентность водорода равна 1, азота – 3.

По способу перекрывания электронных облаков, связи бывают двух видов: s - связь и p - связь.

s - связь возникает при перекрывании двух электронных облаков по оси, соединяющей ядра атомов.

Рис. 15. Схема образования s - связей.

p - связь образуется при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра взаимодействующих атомов.

Рис. 16. Схема образования p - связей.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ КОВАЛЕНТНОЙ СВЯЗИ.

1. Длина связи, ℓ. Это минимальное расстояние между ядрами взаимодействующих атомов, которое соответствует наиболее устойчивому состоянию системы.

2. Энергия связи, E min – это то количество энергии, которое необходимо затратить для разрыва химической связи и для удаления атомов за пределы взаимодействия.

3. Дипольный момент связи, , m=qℓ. Дипольный момент служит количественной мерой полярности молекулы. Для неполярных молекул дипольный момент равен 0, для неполярных не равен 0. Дипольный момент многоатомной молекулы равен векторной сумме диполей отдельных связей:

4. Ковалентная связь характеризуется направленностью. Направленность ковалентной связи определяется необходимостью максимального перекрывания в пространстве электронных облаков взаимодействующих атомов, которые приводят к образованию наиболее прочных связей.

Так как эти s-связи строго ориентированы в пространстве, в зависимости от состава молекулы они могут находиться под определенным углом друг к другу – такой угол называется валентным.

Двухатомные молекулы имеют линейное строение. Многоатомные молекулы имеют более сложную конфигурацию. Рассмотрим геометрию различных молекул на примере образования гидридов.

1. VI группа, главная подгруппа (кроме кислорода), Н 2 S, Н 2 Sе, Н 2 Те.

S 1s 2 2s 2 р 6 3s 2 р 4

У водорода в образовании связи участвует электрон с s-АО, у серы – 3р у и 3р z . Молекула Н 2 S имеет плоское строение с углом между связями 90 0 . .

Рис 17. Строение молекулы Н 2 Э

2. Гидриды элементов V группы, главной подгруппы: РН 3 , АsН 3 , SbН 3 .

Р 1s 2 2s 2 р 6 3s 2 р 3 .

В образовании связи принимают участие: у водорода s-АО, у фосфора - р у, р х и р z АО.

Молекула РН 3 имеет форму тригональной пирамиды (в основании – треугольник).

Рис 18. Строение молекулы ЭН 3

5. Насыщаемость ковалентной связи - это число ковалентных связей, которые может образовывать атом. Оно ограничено, т.к. элемент обладает ограниченным количеством валентных электронов. Максимальное число ковалентных связей, которые может образовывать данный атом в основном или возбуждённом состоянии, называется его ковалентностью.

Пример: водород – одноковалентен, кислород – двухковалентен, азот – трёхковалентен и т. д.

Некоторые атомы могут повышать свою ковалентность в возбуждённом состоянии за счёт разъединения спаренных электронов.

Пример. Be 0 1s 2 2s 2

У атома бериллия в возбужденном состоянии один валентный электрон находится на 2p-АО и один электрон на 2s-АО, то есть ковалентность Be 0 = 0 а ковалентность Be* = 2. В ходе взаимодействия происходит гибридизация орбиталей.

Гибридизация - это выравнивание энергии различных АО в результате смешения перед химическим взаимодействием. Гибридизация - условный прием, позволяющий предсказать структуру молекулы при помощи комбинации АО. В гибридизации могут принимать участие те АО, энергии которых близки.

Каждому виду гибридизации соответствует определенная геометрическая форма молекул.

В случае гидридов элементов II группы главной подгруппы в образовании связи участвуют две одинаковые sр-гибридные орбитали. Подобный тип связи называется sр-гибридизация.

Рис 19. Молекула ВеН 2 . sp-Гибридизация.

sp-Гибридные орбитали имеют несимметричную форму, в сторону водорода направлены удлиненные части АО с валентным углом, равным 180 о. Поэтому молекула ВеН 2 имеет линейное строение (рис.).

Строение молекул гидридов элементов III группы главной подгруппы рассмотрим на примере образования молекулы BH 3 .

B 0 1s 2 2s 2 p 1

Ковалентность B 0 = 1, ковалентность B* = 3.

В образовании связей принимают участие три sр-гибридные орбитали, которые образуются в результате перераспределения электронных плотностей s-АО и двух р-АО. Такой тип связи называется sр 2 - гибридизацией. Валентный угол при sр 2 - гибридизации равен 120 0 , поэтому молекула ВН 3 имеет плоское треугольное строение.

Рис.20. Молекула BH 3 . sp 2 -Гибридизация.

На примере образования молекулы СH 4 рассмотрим строение молекул гидридов элементов IV группы главной подгруппы.

C 0 1s 2 2s 2 p 2

Ковалентность C 0 = 2, ковалентность C* = 4.

У углерода в образовании химической связи участвуют четыре sр-гибридные орбитали, образованные в результате перераспределения электронных плотностей между s-АО и тремя р-АО. Форма молекулы СН 4 - тетраэдр, валентный угол равен 109 о 28`.

Рис. 21. Молекула СН 4 . sp 3 -Гибридизация.

Исключениями из общего правила являются молекулы Н 2 О и NН 3 .

В молекуле воды углы между связями равны 104,5 о. В отличии от гидридов других элементов этой группы, вода имеет особые свойства, она полярна, диамагнитна. Все это объясняется тем, что в молекуле воды тип связи sр 3 . То есть в образовании химической связи участвуют четыре sр - гибридные орбитали. На двух орбиталях находится по одному электрону, эти орбитали взаимодействуют с водородом, на двух других орбиталях находится по паре электронов. Наличие этих двух орбиталей и объясняет уникальные свойства воды.

В молекуле аммиака углы между связями равны примерно 107,3 о, то есть форма молекулы аммиака - тетраэдр, тип связи sр 3 . В образовании связи у молекулы азота принимает участие четыре гибридные sр 3 -орбитали. На трех орбиталях находится по одному электрону, эти орбитали связаны с водородом, на четвертой АО находится неподеленная пара электронов, которая обуславливает уникальность молекулы аммиака.

МЕХАНИЗМЫ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ.

МВС позволяет различать три механизма образования ковалентной связи: обменный, донорно-акцепторный, дативный.

Обменный механизм . К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).

Рис. 22. Перекрывание АО, не приводящее к образованию химической связи.

Донорно-акцепторный и дативный механизмы .

Донорно-акцепторный механизм связан с передачей неподеленной пары электронов от одного атома на вакантную атомную орбиталь другого атома. Например, образование иона - :

Вакантная р-АО в атоме бора в молекуле BF 3 акцептирует пару электронов от фторид-иона (донор). В образовавшемся анионе четыре ковалентные связи В-F равноценны по длине и энергии. В исходной молекуле все три связи В-F образовались по обменному механизму.

Атомы, внешняя оболочка которых состоит только из s- или р-электронов, могут быть либо донорами, либо акцепторами неподеленной пары электронов. Атомы, у которых валентные электроны находятся и на d-АО, могут одновременно выступать и в роли доноров, и в роли акцепторов. Чтобы различить эти два механизма ввели понятия дативного механизма образования связи.

Простейший пример проявления дативного механизма - взаимодействие двух атомов хлора.

Два атома хлора в молекуле хлора образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р-электроны. Кроме того, атом Сl - 1 передает неподеленную пару электронов 3р 5 - АО атому Сl - 2 на вакантную 3d-АО, а атом Сl - 2 такую же пару электронов на вакантную 3d -АО атома Сl - 1. Каждый атом выполняет одновременно функции акцептора и донора. В этом и есть дативный механизм. Действие дативного механизма повышает прочность связи, поэтому молекула хлора прочнее молекулы фтора.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ.

По принципу донорно-акцепторного механизма образуется огромный класс сложных химических соединений - комплексные соединения.

Комплексные соединения - это соединения, имеющие в своем составе сложные ионы, способные к существованию как в кристаллическом виде, так и в растворе, включающие центральный ион или атом, связанный с отрицательно заряженными ионами или нейтральными молекулами ковалентными связями, образованными по донорно-акцепторному механизму.

Структура комплексных соединений по Вернеру.

Комплексные соединения состоят из внутренней сферы (комплексный ион) и внешней сферы. Связь между ионами внутренней сферы осуществляется по донорно-акцепторному механизму. Акцепторы называются комплексообразователями, ими часто могут быть положительные ионы металлов (кроме металлов IA группы), имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и уменьшением его размера.

Доноры электронной пары называются лигандами или аддендами. Лигандами являются нейтральные молекулы или отрицательно заряженные ионы. Количество лигандов определяется координационным числом комплексообразователя, которое, как правило, равно удвоенной валентности иона-комплексообразователя. Лиганды бывают монодентантными и полидентантными. Дентантность лиганда определяется числом координационных мест, которые лиганд занимает в координационной сфере комплексообразователя. Например, F - - монодентантный лиганд, S 2 O 3 2- - бидентантный лиганд. Заряд внутренней сферы равен алгебраической сумме зарядов составляющих ее ионов. Если внутренняя сфера имеет отрицательный заряд – это анионный комплекс, если положительный – катионный. Катионные комплексы называют по имени иона-комплексообразователя по-русски, в анионных комплексах комплексообразователь называется по-латыни с добавлением суффикса –ат . Связь между внешней и внутренней сферами в комплексном соединении – ионная.

Пример: K 2 – тетрагидроксоцинкат калия, анионный комплекс.

1. 2- - внутренняя сфера

2. 2K + - внешняя сфера

3. Zn 2+ - комплексообразователь

4. OH – - лиганды

5. координационное число – 4

6. связь между внешней и внутренней сферами ионная:

K 2 = 2K + + 2- .

7. связь между ионом Zn 2+ и гидроксильными группами – ковалентная, образованная по донорно-акцепторному механизму: OH – - доноры, Zn 2+ - акцептор.

Zn 0: … 3d 10 4s 2

Zn 2+ : … 3d 10 4s 0 p 0 d 0

Типы комплексных соединений :

1. Аммиакаты - лиганды молекулы аммиака.

Cl 2 – хлорид тетраамминмеди (II). Аммиакаты получают действием аммиака на соединения, содержащие комплексообразователь.

2. Гидроксосоединения - лиганды ОН - .

Na – тетрагидроксоалюминат натрия. Получают гидроксокомплексы действием избытка щелочи на гидроксиды металлов, обладающие амфотерными свойствами.

3. Аквакомплексы - лиганды молекулы воды.

Cl 3 – хлорид гексааквахрома (III). Аквакомплексы получают взаимодействием безводных солей с водой.

4. Ацидокомплексы - лиганды анионы кислот – Cl - , F - , CN - , SO 3 2- , I – , NO 2 – , C 2 O 4 – и др.

K 4 – гексацианоферрат (II) калия. Получают взаимодействием избытка соли, содержащей лиганд на соль, содержащую комплексообразователь.

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ.

МВС достаточно хорошо объясняет образование и структуру многих молекул, но этот метод не универсален. Например, метод валентных связей не даёт удовлетворительного объяснения существованию иона , хотя еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь 2,65эВ. Однако никакой электронной пары в этом случае образовываться не может, поскольку в состав иона входит всего один электрон.

Метод молекулярных орбиталей (ММО) позволяет объяснить ряд противоречий, которые нельзя объяснить, используя метод валентных связей.

Основные положения ММО.

1. При взаимодействии двух атомных орбиталей, образуются две молекулярные орбитали. Соответственно, при взаимодействии n-атомных орбиталей, образуется n-молекулярных орбиталей.

2. Электроны в молекуле в равной степени принадлежат всем ядрам молекулы.

3. Из двух образовавшихся молекулярных орбиталей, одна обладает более низкой энергией, чем исходная, это связывающая молекулярная орбиталь , другая обладает более высокой энергией чем исходная, это разрыхляющая молекулярная орбиталь .

4. В ММО используют энергетические диаграммы без масштаба.

5. При заполнении энергетических подуровней электронами, используют те же правила, что и для атомных орбиталей:

1) принцип минимальной энергии, т.е. в первую очередь заполняются подуровни, обладающие меньшей энергией;

2) принцип Паули: на каждом энергетическом подуровне не может быть больше двух электронов с антипараллельными спинами;

3) правило Хунда: заполнение энергетических подуровней идёт таким образом, чтобы суммарный спин был максимальным.

6. Кратность связи. Кратность связи в ММО определяется по формуле:

, когда Кp= 0, связь не образуется.

Примеры.

1. Может ли существовать молекула Н 2 ?

Рис. 23. Схема образования молекулы водорода Н 2 .

Вывод: молекула Н 2 будет существовать, так как кратность связи Кр > 0.

2. Может ли существовать молекула Не 2 ?

Рис. 24. Схема образования молекулы гелия He 2 .

Вывод: молекула Не 2 не будет существовать, так как кратность связи Кр = 0.

3. Может ли существовать частица Н 2 + ?

Рис. 25. Схема образования частицы Н 2 + .

Частица Н 2 + может существовать, так как кратность связи Кр > 0.

4. Может ли существовать молекула О 2 ?

Рис. 26. Схема образования молекулы О 2 .

Молекула О 2 существует. Из рис.26 следует, что у молекулы кислорода имеется два неспаренных электрона. За счет этих двух электронов молекула кислорода парамагнитна.

Таким образом метод молекулярных орбиталей объясняет магнитные свойства молекул.

МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ.

Все межмолекулярные взаимодействия можно разделить на две группы: универсальные и специфические . Универсальные проявляются во всех молекулах без исключения. Эти взаимодействия часто называют связью или силами Ван-дер-Ваальса . Хотя эти силы слабые (энергия не превышает восемь кДж/моль), они являются причиной перехода большинства веществ из газообразного состояния в жидкое, адсорбции газов поверхностями твердых тел и других явлений. Природа этих сил электростатическая.

Основные силы взаимодействия:

1). Диполь – дипольное (ориентационное) взаимодействие существует между полярными молекулами.

Ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояния между молекулами и ниже температура. Поэтому чем больше энергия этого взаимодействия, тем до большей температуры нужно нагреть вещество, чтобы оно закипело.

2). Индукционное взаимодействие осуществляется, если в веществе имеется контакт полярных и неполярных молекул. В неполярной молекуле индуцируется диполь в результате взаимодействия с полярной молекулой.

Cl d + - Cl d - … Al d + Cl d - 3

Энергия этого взаимодействия возрастает с увеличением поляризуемости молекул, то есть способности молекул к образованию диполя под воздействием электрического поля. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

3). Дисперсионное взаимодействие – это взаимодействие неполярных молекул за счет мгновенных диполей, возникающих за счет флуктуации электронной плотности в атомах.

В ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ.

4) Силы отталкивания обусловлены взаимодействием электронных облаков молекул и проявляются при их дальнейшем сближении.

К специфическим межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, то есть, связанные с переносом электронов от одной молекулы к другой. Образующаяся при этом межмолекулярная связь обладает всеми характерными особенностями ковалентной связи: насыщаемостью и направленностью.

Химическая связь, образованная положительно поляризованным водородом, входящим в состав полярной группы или молекулы и электроотрицательным атомом другой или той же молекулы, называется водородной связью. Например, молекулы воды можно представить следующим образом:

Сплошные черточки – ковалентные полярные связи внутри молекул воды между атомами водорода и кислорода, точками обозначены водородные связи. Причина образования водородных связей состоит в том, что атомы водорода практически лишены электронных оболочек: их единственные электроны смещены к атомам кислорода своих молекул. Это позволяет протонам, в отличие от других катионов, приближаться к ядрам атомов кислорода соседних молекул, не испытывая отталкивания со стороны электронных оболочек атомов кислорода.

Водородная связь характеризуется энергией связи от 10 до 40 кДж/моль. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т.е. их ассоциацию в димеры или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар.

Например, фтороводород в газовой фазе существует в виде димера.

В сложных органических молекулах существуют как межмолекулярные водородные связи так и внутримолекулярные водородные связи.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры плавления и кипения, чем их изомеры, способные образовывать межмолекулярные водородные связи.

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH)

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + ,

где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.